Comparison between periodic and stochastic parabolic light trapping structures for thin-film microcrystalline Silicon solar cells.

نویسندگان

  • M Peters
  • C Battaglia
  • K Forberich
  • B Bläsi
  • N Sahraei
  • A G Aberle
چکیده

Light trapping is of very high importance for silicon photovoltaics (PV) and especially for thin-film silicon solar cells. In this paper we investigate and compare theoretically the light trapping properties of periodic and stochastic structures having similar geometrical features. The theoretical investigations are based on the actual surface geometry of a scattering structure, characterized by an atomic force microscope. This structure is used for light trapping in thin-film microcrystalline silicon solar cells. Very good agreement is found in a first comparison between simulation and experimental results. The geometrical parameters of the stochastic structure are varied and it is found that the light trapping mainly depends on the aspect ratio (length/height). Furthermore, the maximum possible light trapping with this kind of stochastic structure geometry is investigated. In a second step, the stochastic structure is analysed and typical geometrical features are extracted, which are then arranged in a periodic structure. Investigating the light trapping properties of the periodic structure, we find that it performs very similar to the stochastic structure, in agreement with reports in literature. From the obtained results we conclude that a potential advantage of periodic structures for PV applications will very likely not be found in the absorption enhancement in the solar cell material. However, uniformity and higher definition in production of these structures can lead to potential improvements concerning electrical characteristics and parasitic absorption, e.g. in a back reflector.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Analyzing periodic and random textured silicon thin film solar cells by Rigorous Coupled Wave Analysis

A simple and fast method was developed to determine the quantum efficiency and short circuit current of thin-film silicon solar cells prepared on periodically or randomly textured surfaces. The optics was studied for microcrystalline thin-film silicon solar cells with integrated periodic and random surface textures. Rigorous Coupled Wave Analysis (RCWA) was used to investigate the behaviour of ...

متن کامل

Improving the optical properties of thin film plasmonic solar cells of InP absorber layer using nanowires

In this paper, a thin-film InP-based solar cell designed and simulated. The proposed InP solar cell has a periodic array of plasmonic back-reflector, which consists of a silver layer and two silver nanowires. The indium tin oxide (ITO) layer also utilized as an anti-reflection coating (ARC) layer on top. The design creates a light-trapping structure by using a plasmonic back-reflector and an an...

متن کامل

Comparison of periodic and random structures for scattering in thin- film microcrystalline silicon solar cells

Random structures are typically used for light trapping in thin-film silicon solar cells. However, theoretically periodic structures can outperform random structures in such applications. In this paper we compare random and periodic structures of similar shape. Both types of structure are based on atomic force microscopy (AFM) scans of a sputtered and etched ZnO layer. The absorption in a solar...

متن کامل

Flexible flux plane simulations of parasitic absorption in nanoplasmonic thin-film silicon solar cells

Photovoltaic light trapping theory and experiment do not always clearly demonstrate how much useful optical absorption is enhanced, as opposed to parasitic absorption that cannot improve efficiencies. In this work, we develop a flexible flux plane method for capturing these parasitic losses within finite-difference time-domain simulations, which was applied to three classical types of light tra...

متن کامل

Flexible Microcrystalline Silicon Solar Cells on Periodically Textured Plastic Substrates

Roll-to-roll processing of thin film solar cells on flexible low cost substrates is an attractive option to lower the production cost of photovoltaic modules. Plastic substrates like PET or PEN are insulating which potentially offers advantages compared to conducting steel foils. However, plastic substrates require lower processing temperatures and novel schemes for efficient light trapping. In...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Optics express

دوره 20 28  شماره 

صفحات  -

تاریخ انتشار 2012